
Manage quality processes

with Bugzilla

 An open-source bugtracker and testing tool

initially developed by Mozilla.

 Initially released by Netscape in 1998.

 Similar to many in-house bug-tracking and testing

tools developed in leading IT firms.

 Have been used widely in open-source code and

developments

 Developed on Perl. It is built on,

 A database, usually MySQL, PostgreSQL, or

Oracle;

 Web server, i.e. Apache, or Microsoft IIS.

 A suitable SMTP server.

Birth Certificate of a Bug:

Bugzilla in a Nutshell

Bugzilla provides the following services,

 User management, a user can be a bug submitters, a

developer, and a voter.

 Complete bug life cycle management, including creation,

handling, tracking and closing of a bug.

 Support Orthogonal Defect Classification.

 A user can record orthogonal factors such as trigger,

severity, components, ...

 Improve the visibility of quality processes, for example,

one can query bugs by,

 Component,

 Developers assigned to.

Birth Certificate of a Bug:

Bugzilla in a Nutshell

Bugzilla around world
Free Software Projects

Mozilla: https://bugzilla.mozilla.org/

Linux Kernel: http://bugzilla.kernel.org/

Gnome: http://bugzilla.gnome.org/

KDE: http://bugs.kde.org/

Apache Project: http://issues.apache.org/bugzilla/

Open Office: http://www.openoffice.org/issues/query.cgi

Eclipse: http://bugs.eclipse.org/bugs/

Linux Distributions

Red Hat: https://bugzilla.redhat.com/bugzilla/

Mandriva: http://qa.mandriva.com/

Gentoo: http://bugs.gentoo.org/

TurboLinux: https://bts.turbolinux.co.jp/bugtraq/

Novell: https://bugzilla.novell.com/

Companies

NASA: http://itos.gsfc.nasa.gov/~bugzilla/

Facebook: http://bugs.developers.facebook.com/

Plus Akamai, Nokia, The New York Times, Yahoo! and many more..Mozilla firefox

Bug Life Cycle

 This diagram

implies a generic

quality process.

 You need to

define your bug

life cycle in your

test strategy and

test plan

documents.

Birth Certificate of a Bug:

Create a Bugzilla Record

 First choose product,

 Necessary fields:

 Component

 Assign To: gets filled in automatically with default

assignee for the component

 Summary: pitchy, one-line description

 Description: complete bug description. All technical

details needed to reproduce the bug, including,

 Trigger, reproduction steps, error outputs, etc.

Bugzilla and SVN

 It is important to record your changes using
SVN revision number.

 Other can know when and how a bug is fixed.

 Cross-reference bugs with svn log entries. A
two-step process:

 When submitting a change to SVN, you SVN log
message comment shall include a line “bug# xxxx”
to record which bug this change is related to.

 In the bug: What changes were made to the

source code to fix this bug?

 Cut and paste your submission log, and paste it in the

description field of a bug.

Bugzilla @ senior design

 A bugzilla server has been set up,

 design.tricity.wsu.edu/bugzilla.

 Each of you will receive your bugzilla acount.

 Use bugzilla to track bugs and tasks.

 Your project manager will create a task for each
milestone objective, and assign it to the proper
team member.

 Integrate bugzilla into your team process.

 You shall document the usage of bugzilla in test
strategy and/or test plan.

 What is discussed here is a generic process, your
team needs to modify it to fit your own process.

Version Control with
Subversion

Subversion System

 For managing large projects with multiple people
 widely used, open source. initiated in 2000 by CollabNet Inc.

 In 2007, No.1 market share in Software Configuration

Management (SCM) software and a strong performer in

Software Configuration and Change Management (SCCM).

 Use in many open-source projects such as Apache, Google

code, etc.

 works across network as client-server

 Fixes many of shortcomings of CVS, for example, it

can preserve file/directory history when a user,
 Delete a file

 Rename/move a file.

Subversion System

 store and retrieve all versions of all directories and files in a

project

 usually source code

 also documentation, tests, binaries, ...

 support multiple concurrent users

 independent editing of files

 merged into single version

SVN Basics

 Files are stored in a centralized repository

 Contains a database of files and directories, and internal version

information

 Can be local or remote.

 Why version control system?

 Things we want to avoid :

SVN Basics

 Developers checkout a private working-copy

of the project

 Modifications are made locally

 When a developer is satisfied with the changes, a

commit propagates them to the repository

 Revision numbers

 Each commit of the project gets a revision number

 Unlike CVS, a SVN revision number is an integer.

 The initial revision number is 0

Tags, Branches, and Directories

SVN support tags and branches using directories.

 Unlike CVS, svn doesn’t make difference among tags, branches, and directories.

 A typical file structure of SVN, usually you create 3 directories:

 Trunk: contain head revision.

 Tags: tag your files.

 Branches: different branches of same file.

 A typical scenario of tags and branches, and merging difference revision.

2 3

4

5

1

6

7 8

9

10 12

11

13

14

15 16

Trunks

Tags

Discontinued

Development branch

Merges

Branches

• A new tag will be created by creating a new directory under “tags”.

• A new branch will be created by creating a new directory under “branches”.

• New branch/tag is created in repository using “copy” command.

Get Started

 SVN uses client-server architecture.

 Client side commands start with “svn”

 Server side commands start with “svnadmin”

 Create a new repository (serve-side command create, executed on

the server, e.g. elec.tricity.wsu.edu):

 svnadmin create /home/svn/cptsXXX/username, where cptsXXX is this

class.

Get Started

 Setting up the files (client-side command import, performed on your

working machine):

 Build the following directory structure on your local machine:

 ../homework1/branches/

 ../homework1/tags/

 ../homework1/trunk/

 Import into repository:

 cd to your local homework1 directory

svn import ../homework1

svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/username -m

“initial import”

 -m stands for “--message”, the log information.

 SVN supports a set of access methods.

 Possible access methods: file: svn: svn+ssh: http: https:

Client-Side Commands

 Getting the source (client-side command checkout):

 svn checkout

svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/usern

ame

 After you edit your files, commit changes (client-side command

commit):

 svn commit -m “Added comments” foo.c

 “svn update” updates the current work version of file.

 Sample output of update

 U Map.java - local copy was updated with changes from

repository

 A Map.java - file was added

 Map.java - file was deleted

 Map.java - file was replaced

 Map.java - file was successfully merged

Client-Side Commands

 Add files to repository:

 svn add main.java

 Important: you need to use commit to actually add the file to

the repository

 It is always a good practice to check out files in a clean directory to

make sure that the file is committed.

 Remove files from the repository:

 svn delete extrafoo.java

 Commit to actually remove the file from the repository.

Client-Side Commands

 Copy files: svn preserves version history via copy

 Copy is the way to tag revisisions and/or create new branches

svn copy
svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/username/homework1/trunk

svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/username/homework1/branc

hes/mybranch

 Move files:

 svn move file_to_move new_path

 Create directories:

 svn mkdir directory_name

Client-Side Commands

 “svn diff”: check the different between two revisions.

 “svn diff -r N” compares the current working version against

the version N.

 “svn diff -r N:M” compares the revision M against the version

N. For example:

 “svn diff -r HEAD” compares the current working version

against HEAD revision.

 “svn diff -r HEAD:COMMITTED” compares the committed

revision against the HEAD revision.

 Reverting to version in repository: svn revert

Client-Side Commands

 “svn merge”: merge two revisions.

 As an improvement to CVS, SVN can merge the difference

between two different revisions to another revision.

 For example, suppose you want to merge mybranch@revision

3 to trunk, you can issue the following command on your

working trunk copy:

 svn merge –r N:M svn+ssh://home/svn/user_name/myproj/mybranch

Client-Side Commands

 If a developer submitted a change before you do, and then

both of you change the same line of code, then there is a

conflict when you update your working copy.

 In case of conflict, 3 additional files are created:

 Foo.java.mine

 Foo.java.rOLDREV

 Foo.java.rNEWREV

 Manually resolve the conflict, delete all other files, then

commit

 You can also check the potential conflictions without

updating: svn status

Client-Side Commands

 Looking at log messages: svn log

 Displays a list of all commit messages

 Tracking changes

 svn annotate

 Displays the file line by line, with the name of the person

that last

 modified that line

Use of SVN in class

 svn is installed on ELEC system.

 Each of you has a personal repository, accessible only by yourself

and me.

 For your project, a repository will be created for your team.

 An important note: please don’t delete/rename repository directly

on ELEC system using native file system operations. Doing so will

destroy the integrity of your repository.

 We will make extensive use of SVN as part of tools we used to

standardize our processes. It will be used in,

 Homework submission;

 Concurrent code development in course project;

 Tracking website changes, etc.

Use of SVN in class

 You can access SVN from your home using svn+ssh

protocol.

 You may install SVN on your linux machine, or,

 Use tortoisesvn on Windows.

 Many modern IDEs, such as netbean for java, include the support for

SVN so you can check out the code directly through these IDEs.

