
Entropy and Software Systems: Towards an
Information-Theoretic Foundation of Software Testing

Linmin Yang, Zhe Dang, Thomas R. Fischer, Min Sik Kim and Li Tan
School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

{lyang1, zdang, fischer, msk}@eecs.wsu.edu, litan@tricity.wsu.edu

ABSTRACT
We integrate information theory into software testing. In
particular, we use entropy in information theory to mea-
sure the amount of uncertainty in a software system before
it is fully tested, and we show how the amount decreases
when we test the system. Moreover, we introduce behav-
iorial complexity as a novel complexity metric for labeled
graphs (which can be interpreted as control flow graphs, de-
sign specifications, etc.), which is also based on information
theory. We seek practical approaches in testing real systems
using the above theories, and we apply our novel approaches
in testing model-based embedded systems and network in-
trusion detection systems. Our information-theoretic ap-
proach is syntax-independent, which is a desired property
in software testing.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, software science

General Terms
Measurement, Theory

Keywords
software testing, information theory, syntax-independent

1. INTRODUCTION
Why do we need to test software systems? Essentially, we

test a software system since there is uncertainty in its actual
behaviors. The uncertainty comes from the fact that behav-
iors of the software system are too hard to be analytically
analyzed (e.g., the software system is Turing-complete), or
even not available to analyze (e.g., the software system un-
der test is a black box). In other words, the actual be-
haviors (i.e., semantics) of the software system are (at least
partially) unknown. In our opinion, software testing is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

approach to resolve the uncertainty, and it gains knowledge
of a software system by running it, which resembles the fact
that opening a box of chocolates resolves the uncertainty of
what kinds of chocolates are in the box.

How is “uncertainty” defined in mathematics? Entropy
is specifically used to measure the amount of uncertainty
in an object in information theory [10, 6], which is a well-
established mathematical theory underpinning all modern
digital communications. Can entropy in information theory
be used to characterize the uncertainty in a software system?
Our answer is yes, but we have to deal with the following
challenges first:

1. Information theory is a probability-based theory. Peo-
ple may argue that there are no probabilities in soft-
ware systems. In reality, people use probabilities to
measure the distribution of an object over a probabilis-
tically measurable space, and it is a useful way to han-
dle the uncertainty. Probabilities may not be meaning-
ful to depict a specific object, but they are statistically
correct for a large number of objects. Additionally,
we do not need any pre-assigned probabilities to cal-
culate the entropy of a software system; instead, we
always consider the worst-case entropy, where we do
not know any additional information about the system
except its specification, and we calculate probabilities
that achieve the maximal entropy.

2. In information theory, entropy is defined on a random
variable with no internal structures and also general-
ized to a sequence of random variables (i.e., a ran-
dom process). However, in computer science, the sub-
jects of testing are software systems which are struc-
tural, e.g., software systems modeled as labeled graphs.
Therefore, there is need to develop an information the-
ory on structural random variables and the procedure
of how the uncertainty of the structured random vari-
ables is resolved. Basically, in our approach, a software
system is modeled as either a structured random vari-
able or a random process, which will be illustrated in
the following section.

What merits can this information-theoretic approach bring
to software testing? This approach provides a syntactic-
independent coverage criterion for software testing, since the
Shannon entropy of a discrete random variable remains un-
changed after a one-to-one function is applied [6]. Such a
characterization is of great importance. For instance, con-
sider a component-based system which is a nondeterministic
choice C1�C2 over two components C1 and C2. One com-

427

ponent C1 is modeled using statecharts [7] in standardized
modeling language UML [1], while the other component C2

is modeled using logical expressions such as LTL formulas
[4]. Suppose that we use the branch-coverage [3] criterion
and the property-coverage criterion [11] as testing criteria
for C1 and C2, respectively. We also have a test set t which
consists of two subsets t1 and t2, which are test sets for com-
ponents C1 and C2, respectively. It would be impossible to
obtain a coverage that the test set t achieves on the whole
system, even if we already have the branch coverage that t1
achieves on C1 and the predicate coverage that t2 achieves
on C2. On the contrary, our information-theoretic approach
can overcome this problem, since our approach is syntac-
tic independent, and it does not care whether a system is
modeled as a graph or a formula, as long as its semantics
remains the same. Moreover, this approach can help us de-
velop optimal testing strategies in choosing test cases. If a
syntax-based test adequacy criterion returns the same ad-
equacy degree for two test sets, then the two test sets are
indistinguishable. For instance, every branch is born equal
in branch coverage criterion. However, this is not intuitively
true. In our information-theoretic approach, we choose the
branch that can reduce the entropy most. Finally, this ap-
proach provides a guidance on grading the importance of
units in a component-based system – it is natural that we
consider units containing more information of greater im-
portance. Such a criterion can be very useful, for example,
when we distribute cost in testing units within a component-
based system.

2. HOW TO APPLY THE CONCEPT OF
ENTROPY IN SOFTWARE TESTING?

2.1 Software System Modeled as Random
Variable

In this subsection, the system under test is a reactive
black-box, where we can only observe its input-output be-
haviors. In this context, the objective of software testing
is to test whether the observable behaviors of a reactive
black-box software system conform with a set of sequences of
events. The set is called a trace-specification, which specifies
the observable behaviors that the system under test is in-
tended to have. The original trace-specification could be an
infinite language. However, in the real world, we can only
test a finite length of the input sequence. Therefore, we
simply assume that the trace-specification we are to test is
finite. Given a trace-specification P of a system under test,
we can use a trace-specification tree T to represent P . Each
edge in T is labeled with an event, and each path (a walk
from the root to a leaf or nonleaf node) in T corresponds to a
sequence of events in P . For example, Figure 1 is the trace-
specification tree T corresponding to the trace-specification
P = {e1, e1e2, e1e3, e1e4, e5, e5e6, e5e6e7}.

A sequence in the trace-specification P (also a path in
the corresponding trace-specification tree T) is a test case
sent to the system. Suppose that there is a test oracle that
could show us the longest prefix of the path such that the
prefix is an actual observable behavior of the system. We
will mark every edge (if any) in the prefix as connected
and mark the remaining edges on the path as disconnected.
All of the connected edges in the trace-specification tree T ,
which correspond to all of the actual observable behaviors

e1 e5

e3
e4

N0

N1

N2 N3 N4

e2

N5

N6

N7

e6

e7

Figure 1: An example trace-specification tree T .

of the system with respect to the trace-specification, form a
system tree. However, before any testing is performed, we
do not know exactly what the system tree is, except that
it is a subtree that shares the same root with the trace-
specification tree. Adopting the idea of entropy in infor-
mation theory, we model the system tree (which we do not
clearly know before testing) as a random variable XT , whose
sample space Ω is the set of all subtrees that share the same
root with the trace-specification tree T . The entropy of the
trace-specification tree is simply defined to be the entropy
of the random variable XT which, intuitively, describes the
amount of information in the system under test with respect
to the given potential observable behaviors in the trace-
specification tree T (i.e., the trace-specification P).

To calculate the entropy of XT , we need its probability
distribution. We use p(t, T) to denote the probability of a
subtree t being the system tree (that shares the same root
with T). The Shannon entropy of XT , simply written H(T),
is

H(T) = −
∑

t≺T

p(t, T) log p(t, T),

where t ≺ T denotes that t is a subtree of T and they share
the same root. Probabilities of edges could be pre-assigned
and then we can calculate the probability p(t, T) for each
subtree t and the entropy H(T) as well. However, usually
probabilities of edges are simply unknown. In that case,
we can calculate the probabilities of edges such that H(T)
reaches the maximum (i.e., we do not have any additional
information). For the trace-specification tree T in Figure
1, the probabilities of edges that make H(T) maximum are
p∗(e2) = p∗(e3) = p∗(e4) = p∗(e7) = 1/2, p∗(e1) = 8/9,
p∗(e5) = 3/4 and p∗(e6) = 2/3, and the maximal entropy is
H(T) = 5.17 bits.

After testing a test case in the trace-specification tree, we
will know that some edges are connected while some are not.
This knowledge decreases the entropy H(T). We use the
entropy reduction as a testing coverage criterion, and every
time we test the system, we choose the test case that can
reduce the entropy most, i.e., archives the largest amount
of gain. In our previous work [12], we give three differ-
ent optimal testing strategies to select test cases. For the
trace-specification tree T in Figure 1, suppose that we can
only test three branches. The optimal testing strategy is
e1, e2, e3.

In practice, we could have additional information about
the system under test. For instance, when testing a soft-
ware system that has already been well tested, we could as-
sume that an edge in the trace-specification tree is connected
with a probability that has a lower bound. For instance, we

428

s1

e1

s2

e4

e6

e3 e5

e2

Figure 2: A labeled graph A.

can assume that every edge in Figure 1 is connected with
probability at least 0.7. In this case, the probabilities that
make H(T) maximum are p(e1) = 0.86, p(e5) = 0.74 and
p(ei) = 0.7 for i = 2, 3, 4, 6, 7, and the maximal entropy
with the addition information is H(T) = 4.79 bits. Suppose
that we can only test three branches. With the additional
information, the optimal testing strategy is e1, e2, e5.
A trace-specification tree can be unrolled from a labeled

graph which serves as a specification of the black box under
test. Existing testing criteria like branch coverage are to
select test cases to cover edges in the graph. What are the
implications of using branch coverage as a testing criterion?
Interestingly, we can prove the following: for every nontriv-
ial (i.e., containing at least two paths of length > 1) labeled
graph, if every test set that achieves the same branch cov-
erage has the same entropy reduction, then the black box
under test cannot be black (i.e., one must know additional
information about the black box). Then, what kind of in-
formation is already known? How can such information be
integrated into black-box testing?

2.2 Software System Modeled as Random
Process

In the previous subsection, we model the system under
test as a random variable, and calculate its maximal en-
tropy. In this subsection, we will provide another approach
to model the complexity of a software system. Here, speci-
fications of software systems are modeled as graphs instead
of trees.

Let A be a labeled graph with a designated initial node. A
behavior of A is a concatenation of labels on a path starting
from the initial node. The behavior set L(A) is the set of
behaviors of A. A labeled graph A can be interpreted as a
control flow graph or design specification of a software sys-
tem, and therefore the behavior set L(A) can be interpreted
as the set of desired behaviors of the software system. Let
N(n) be the number of behaviors of length n in the behavior
set L(A). We define the behavioral complexity of A as

C(A) = lim
n→∞

logN(n)

n
.

The behavioral complexity measures a system from the per-
spective of software testing: it intends to asymptotically
measure the cost of exhaustive testing of the system. Though
exhaustive testing usually is not possible, the asymptotical
cost is naturally a good indicator of the complexity. The
labeled graph A can be uniquely transferred to a Markov
chain MA, and we can prove that the behavioral complexity
C(A) is the maximal achievable entropy rate of the Markov
chain MA [13]. For instance, the behavioral complexity of
the labeled graph A in Figure 2 is C(A) = 1.58 bits.

A labeled graph A can be updated by adding or deleting
edges, resulting in a new graph A′. Since the behavioral

complexity can be interpreted as the cost of exhaustive test-
ing, we can compare the behavioral complexities C(A) and
C(A′) and then analyze the impact on testing due to the
update. For instance, if we drop the edge e4 in Figure 2 and
get a new graph A′, the behavioral complexity would de-
crease to C(A′) = 1 bit. We say e4 is a critical edge since it
can change the complexity of the graph. However, the edge
e1 is not a critical edge since dropping it will not affect the
behavioral complexity. This can also be generalized to the
concept of a critical subgraph. For instance, the subgraph
with node s2 and edges e4, e5, e6 is a critical subgraph of
A, while the subgraph with node s1 and edges e1, e2 is not.
This approach gives us a way to predict whether an update
would make a system harder to understand/test, or not.

Behavioral complexity can also give us many insights in
testing component-based systems. In the McCabe metric
[9], which is a widely accepted complexity metric, the com-
plexity of a graph is monotonic in the number of nodes and
edges. In our behavioral complexity, we can show that only
loops (but not all loops) can increase the behavioral com-
plexity when units are sequentially composed together. This
result could be very helpful for software development. The
metric can be used to predict the complexity of the seman-
tics of a software system to be built from units, and it can
also help testers properly distribute testing cost among units
of a software system.

3. APPLICATIONS
In this section, we study how to apply the aforementioned

information-theoretic approaches to the testing of practical
software systems. In particular, two types of systems are
studied, namely, model-based embedded systems and net-
work intrusion detection systems.

3.1 Testing for Embedded Systems
We will apply our entropy-based testing to the develop-

ment of model-based embedded systems. These systems typ-
ically contain both digital and analog components, and they
continuously interact with their environment. Examples of
such hybrid and reactive systems include Engine Control
Module (ECM) in automobiles and Autopilot System in air-
crafts. These systems are widely used in safety-critical appli-
cations. Testing still remains a predominant verification and
validation (V&V) method for assuring the quality of these
systems. In fact, testing is an important component in soft-
ware quality standards such as RTCA DO-178B/EUROCAE
ED-12B [5], the standard used in aerospace industry for cer-
tifying avionic software. Traditional coverage criteria such
as MCDC emphasize on the structure of a system. They are
susceptible to implementation changes but not sensitive to
the behaviors of the system. In contrast, our entropy-based
testing criterion focuses on the actual semantics of the sys-
tem. This is especially valuable for safety-critical embedded
application, since our entropy-based testing can guide test-
ing activity towards verifying system requirements.

Entropy-based testing can be applied to model-based em-
bedded design. Model-based design has been adapted by
research and engineering community as a way to tame the
complexity of hybrid embedded system designs. For our case
study, we will choose StateChart [7] as the targeted design
notation. StateChart is widely used in system design, and
it is also the basis for a variety of design languages such as
Charon [2] and Stateflow [8]. In model-based design, a de-

429

sign model serves as high-level executable specification of a
system. There are several ways in which our approach may
be used for model-based design: 1) following the discussion
in Section 2.2, we can identify “critical components” of a
StateChart. Locating these components will help design-
ers understand the source of semantics complexity, and also
help V&V activities being centralized around these compo-
nents; 2) Our information-theoretic approach may be ex-
tended to generate test cases for a StateChart design with
probabilities. These probabilities designate the likeness of
firing enabled transitions. The probabilities may be decided
by usage profiles and/or given as part of requirement spec-
ification. Following the discussion in Section 2.1, we can
generate test cases that quickly reduce the entropy of the
system under test. Intuitively, these test cases expedite the
removal of uncertainty in (understanding) the behaviors of
the system. Such behavioral uncertainty is a major source
of concern in verifying safety-critical applications.

3.2 IDS Evaluation
A network intrusion detection system (IDS) monitors net-

work traffic to identify suspicious packets. It is given a set of
rules, which describe properties and behaviors of malicious
traffic. An IDS compares each incoming network packet with
those rules, and decides an action for the packet; for exam-
ple, it may pass the packet, alert the network administrator,
or reject the packet. Because of many types of attacks and
their variations in the Internet, the number and complexity
of rules have been increasing significantly in recent years.
Therefore, an IDS employs sophisticated data structures to
perform rule matching efficiently to catch up with the line
speed of the network. An IDS has evolved from a simple
pattern matching program into a complex software system,
and testing an IDS has become a challenging task.

Testing and evaluating an IDS is typically conducted by
running it on a testbed network with randomly generated
traffic. This process is similar to a black-box testing in
that we can test whether the response of the IDS to each
packet conforms to the rules. Therefore, the technique in
Section 2.1 can be used to generate test packets in this pro-
cess. However, testing correctness is only a small part of
the IDS evaluation. More critical and more challenging is
to study its behaviors under heavy load. In today’s high-
speed networks, the packet processing time of an IDS often
exceeds the corresponding transmission delay, which forces
the IDS to discard or skip packets. This creates a potential
security hole because the IDS may fail to identify attacks
in such a case. Therefore, it is crucial to understand how
the IDS responds to intense traffic and how its performance
degrades as the load increases. To study the relationship
between the traffic load and the IDS performance, we need
to generated traffic with different levels of intensity.

Varying intensity in traffic generation is not straightfor-
ward. A näıve way is to change the packet rate, the number
of packets per unit time. However, that is insufficient be-
cause the load incurred by a packet depends on which exe-
cution path it takes in an IDS. With today’s large rule set,
it also depends on preceding packets; if successive packets
follow the same execution path, an IDS spends little time
on the latter because the execution path and related data
already reside in the cache memory. Hence, we need to gen-
erate a good mixture of packets that takes various execution
paths in the IDS, and for this purpose, the entropy defined

in Section 2.1 will be able to indicate the potential load of
the generated traffic on the IDS as follows.

The trace-specification tree T is built from the IDS rules.
Because of the nature of rules, listing conditions for multiple
fields in a packet, the resulting tree will look like a decision
tree. Then for each packet in the generated traffic, identify
a path that it will follow, and increment the frequency of
each edge along the path. We use this frequency divided
by the total number of packets as an estimation of p(ei) for
each edge ei. After obtaining every p(ei), we can compute
H(T), which is an approximation of the load incurred by
the given traffic. Because H(T) does not depend on the IDS
implementation, it is useful not only in evaluating a single
IDS but also in comparing different IDSs.

4. CONCLUSION
We define a semantics-based software testing criterion, in-

dependent of the syntax of software systems, and we also in-
troduce a novel complexity metric for labeled graphs (which
can be interpreted as control flow graphs, design specifica-
tions, etc.) named behaviorial complexity. We provide an
information-theoretic foundation for both of them, where
software systems are modeled as either random variables or
random processes. We also seek practical approaches for
optimal testing in the sense of entropy reduction in the con-
text of model-based design and for testing network intrusion
detection systems. Our information-theoretic approach will
significantly advance the understanding of the fundamen-
tal side of software testing. Additionally, our information-
theoretic approach could have applications in other areas
than software testing:

• software understanding from a specification. Our ap-
proach may be upon the specification to identify “dif-
ficult” parts of a software,

• data mining on structural data. Our approach may
provide a new data mining approach that is based on
the structures of the data instead of their appearance,

• threat analysis. Currently, we are working on a similar
information-theoretic approach in detecting a behav-
ioral threat.

5. REFERENCES
[1] http://www.uml.org/.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic,
V. Kumar, P. Mishra, GJ Pappas, and O. Sokolsky.
Hierarchical modeling and analysis of embedded
systems. Proceedings of the IEEE, 91(1):11–28, 2003.

[3] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, 2008.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[5] SC-167 committee. Software considerations in airborne
systems and equipment certification. Technical report,
Radio Technical Commission for Aeronautics, 1992.

[6] T. M. Cover and J. A. Thomas. Elements of
information theory. Wiley-Interscience, second edition,
2006.

[7] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, 1987.

430

[8] MathWorks. Simulink and stateflow.
http://www.mathworks.com.

[9] T.J. McCabe. A complexity measure. IEEE
Transactions on Software Engineering, 2:308–320,
1976.

[10] C. E. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423, 623–656, 1948.

[11] L. Tan, O. Sokolsky, and I. Lee. Specification-based
testing with linear temporal logic. In IRI’04:
proceedings of IEEE Internation Conference on
Information Reuse and Integration, pages 483–498.
IEEE Computer Society, 2004.

[12] L. Yang, Z. Dang, and T. R. Fischer. Information gain
of black-box testing. Submitted.

[13] L. Yang, Z. Dang, and T. R. Fischer. A
syntax-independent complexity metric. In proceedings
of TMFCS’10, pages 127–134, 2010.

431

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

