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Abstract: We propose an extensible object-oriented agent-based framework for 
modelling and simulating supply chains. A problem with existing supply-chain 
analysis tools is that most of them are designed only for specific configurations 
of supply chains. The primary goal of this work is to provide an open and 
extensible framework for analysing supply chains with heterogeneous elements 
and structures. Our framework incorporates the following features: 

1 It adopts an agent-based approach to handle interactions among elements of 
a supply chain, and an analyst can introduce new types of elements for a 
specific application; 

2 To promote the design reusability, we propose an object-oriented type 
system that supports behaviour inheritance; 

3 The framework formally defines a meta-model for elements of a supply 
chain; 

4 The framework includes a discrete-event simulation algorithm, which 
defines interactions among elements via messages and deliveries. 

We also discuss SIMRISK, our Java implementation of the framework. 

Keywords: agent-based modelling and simulation; design extensibility; formal 
semantics; supply chains. 
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1 Introduction 

Supply chains concern the movement of merchandise from suppliers to customers’ hands. 
With increasing integration of the world’s economy, the size and the complexity of  
global supply chains are rising rapidly, and so is the reliance of our economy on these 
supply chains. Understanding and optimising the behaviours of these large-scale global 
supply chains are essential for a variety of topics in supply-chain management, including 
supply-chain risk management (Chen and Zhang, 2008), contracting (van Delft and Vial, 
2004), and performance evaluation (Wei et al., 2007). To reduce cost and maintain profit 
margin, many companies engage themselves in global supply-chain expansion involving 
different elements of supply chains such as suppliers, distributors, retailers, and logistics 
providers across multiple continents (Ferrer and Karlberg, 2006). For example, Costco 
operates its 544 warehouse stores in North America, South America, Asia, and Europe. It 
sources merchandise from all over the world (Costco Wholesale Corporation, 2007). 
Geographically, the participants of a global supply chain are distributed across 
continents. Generally, these participants act as autonomous agents with their own 
business logic and they answer to their own continency. A research question is how to 
model and analyse a supply chain with a diversified profile of elements. 

The primary goal of this work is to provide an open and extensible framework for 
modelling and analysing heterogeneous supply chains. The structure and behaviour of a 
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supply chain are heavily influenced by its underlying business model and market. For 
example, Walmart’s supply-chain operation follows a more traditional setting. It contains 
multiple echelons of suppliers, distribution centres, and stores. In contrast, Dell uses a 
direct channel approach that eliminates intermediate layers. These two supply chains 
differ not only in structure, but also in functionality and strategy at the element level. For 
example, in Dell's ‘build-to-order’ model, supplier sites have manufacturing capabilities 
that can assemble custom-built computers, whereas for most retail chains, suppliers are 
simply warehouses of merchandise providers. Because of the differences and complexity 
in supply-chain operations, most existing supply-chain tools choose to target at only a 
specific set of supply chains with limited extensibility. These tools have a limited 
capability in terms of how much an analyst can extend the tools for his/her own 
application: although many of the existing tools allow an analyst to instantiate new 
elements from existing types, they provide limited [e.g., GBSE (Wang et al., 2008)] or no 
option [e.g., EasySC (Liu et al., 2004)] for an analyst to introduce a new type of element 
or redefine the behaviour of an existing type. This shortcoming severely restricts the 
development and use of general-purpose supply-chain modelling and analysis tools, since 
limited built-in element types cannot meet the demand of modelling diversified profiles 
of supply chains that real-world companies operate. This work is to address this 
shortcoming by proposing an extensible object-oriented and agent-based framework. 
Since supply chains are heavily influenced by their underlying business models and 
markets, one can never anticipate types of elements that may appear in a real-world 
supply chain. So instead of restricting an analyst to a set of predefined types of elements, 
we provide his/her a higher degree of flexibility by supporting custom-defined types of 
elements. Using our object-oriented and agent-based formal framework, an analyst can 
instantiate an existing element type and/or introduce a new type of element. Furthermore, 
to improve design reusability, our framework allows an analyst to define a new type of 
element by inheriting the attributes and behaviours of an existing type. 

The proposed framework makes the following contributions with the focus on 
improving the extensibility and reusability of supply-chain analysis tools: first, the 
framework uses an agent-based approach that supports custom-defined element (agent) 
types. The framework models supply-chain elements as autonomous agents, and it 
provides common functionalities for studying interactions between elements. Analysts 
can define their own types of elements for underlying supply-chain applications; second, 
to promote the design reusability and ease the difficulty in introducing a new type of 
element, the framework incorporates an object-oriented type system that supports 
behaviour inheritance. An analyst can focus on defining behaviour unique to a new type 
of element, while inherits common behaviour from existing types; third, the framework 
defines a meta-model for supply chains and formally defines its semantics. The  
meta-model provides a behavioural and structural abstraction of various supply-chain 
models. The formal semantics removes ambiguity in defining, interpreting, and validating 
a supply-chain model; finally, based on the formal semantics of the meta-model, we 
propose a discrete-event simulation engine for simulating supply chains. 

Our framework uses an agent-based approach for modelling and analysing complex 
supply-chain systems. With a growing number of businesses considering overseas 
suppliers as a way to cut cost, a global supply-chain operation often consists of a large 
number of facility nodes including suppliers, warehouses, and retailers, each of which 
can be seen as an (semi-)autonomous decision-maker. Agent-based approach has been 
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successfully used to study a wide range of complex systems (Axelrod, 1997). These 
systems typically consist of groups of autonomous agents. Agent-based modelling can 
trace its root back to Von Neumann’s theory on cellular automaton (Neumann, 1966), but 
it gets its deserved attention only recently because the advance in computing hardware 
makes it a reality to simulate interactions between a large collection of agents on even 
commercial off-the-shelf (COTS) computers, and emerging multi-core desktop 
computing platforms accelerate such trend. 

We adopt an agent-based approach because the challenge of simulating complex 
supply chains is the exact problem the agent-based modelling technique is prescribed for: 
although the behaviour of each facility node may be simple to understand, the overall 
behaviour of a supply chain as the result of interactions among these nodes is not. Our 
framework models elements of a supply chain as agents, which include facility nodes 
(e.g., warehouses), transportation links (e.g., routes), and other special-purpose elements. 
To improve extensibility, the framework provides several layers of abstraction that 
separate common functionalities from the decision logics and the physical structures 
unique to each type of element: first, the framework makes a clear distinction between 
internal behaviours of elements of a supply chain and their interactions. The framework 
provides common functionalities such as message passing for modelling interactions 
among agents, whereas it leaves the definition of internal behaviour and structure of an 
element to the discretion of an analyst; second, the framework provides a meta-model for 
supply-chain elements. The meta-model abstracts common behaviours and structures of 
elements. For example, the meta-model defines a structural interface including ports, and 
it also provides a skeleton for defining common internal behaviours such as internal 
merchandise transformation. To define a new type of element, an analyst only needs to 
fill in the decision logic unique to that type of the element. 

A distinctive feature of our framework is that it introduces a formal syntactical and 
semantical definition of the meta-model. A common problem for existing supply-chain 
tool (cf. Liu et al., 2004) is that they often provide only a narrative and casual description 
of the semantics of a supply-chain model. Without a rigorous definition of a supply-chain 
model, it often falls into one’s guess work to precisely understand a supply-chain model 
and unambiguously interpret analysis result. Moreover, a casual definition of the 
semantics of a model makes it harder to validate analysis result since the expected 
behaviour of a supply-chain model is not rigidly defined. For the same reason, lack  
of formal semantics makes it harder to tell bugs from legitimate features in tools 
implementations. The formalism we introduced has several benefits: it helps validate 
simulation results and also reduces errors in tool implementations; the formalism also 
facilitates formal analysis of a supply chain. For example, our formal framework supports 
a model-checking-based risk analysis approach proposed by Tan and Xu (2008). 

To reduce overhead in defining a new type of element and improve the design 
reusability, we propose an object-oriented type system. In the type system, types of 
elements are defined as classes and elements are instances of these element classes. The 
type system supports the design reuse by class inheritance. For example, when defining a 
new type of element, say, a special type of warehouse, an analyst can inherit common 
functions and interfaces from a base warehouse class, and override only those of the 
methods representing the decision logic and the internal structure unique to the new type 
of warehouse. 

To see our proposed framework in action, we developed a discrete-event simulation 
algorithm and implemented the framework in Java. Simulation remains as an important 
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tool for analysing the behaviour of a supply chain. Compared with other methods such as 
stochastic analysis, simulation does not heavily tax one’s theoretical background and 
analysis skills. Simulation results can be visualised and explained to executives and other 
stakeholders with little or no background on supply-chain management. With the 
introduction of more powerful hardware, especially emerging multi-core architecture, 
there are renewed interests in recent years in desktop-based simulation tools for supply 
chains (Wang et al., 2008). The simulation algorithm provides the guideline for 
implementing a discrete-event simulation engine for the framework. It is also part of our 
formal framework in which it defines simulation semantics of a supply-chain model. 

The rest of the paper is organised as follows: in Section 2 we discuss related works; in 
Section 3 we introduce a meta-model for formally defining supply-chain elements. The 
meta-model defines the interface of an element (Section 3.1), its internal and external 
behaviours (Section 3.2), and constraints (Section 3.3). In Section 4, we introduce our 
simulation algorithm and define a simulation-based formal semantics for a supply-chain 
model. In Section 5, we propose an object-oriented type system based the meta-model to 
promote the design reusability and to reduce the overhead of defining a new type of 
element. In Section 6, we discuss SIMRISK, a prototype implementation of our proposed 
framework. Finally, Section 7 concludes the paper and discusses future research 
directions on this subject. 

2 Related works 

Supply-chain modelling and simulation have attracted much research interest recently. 
For instance, Liu et al. (2004) introduced a Java-based supply-chain simulation tool  
Easy-SC. In Easy-SC modelling environment, facility nodes are instantiated from six 
predefined enterprise node types, and routes were defined as connecting arcs between 
facility nodes. Wang et al. (2008) discussed a general business simulation environment 
(GBSE) developed in IBM China research lab. GBSE is a Java-based event-driven 
simulation tool built on top of the Eclipse platform. GBSE defines three types of facility 
nodes and one type of link. These tools provide limited (e.g., GBSE ) or no option (e.g., 
EasySC) for an analyst to define a new type of element. In contrast, our approach 
improves the tools extensibility and the design reusability by allowing an analyst to 
define his/her own types of elements and/or to redefine existing ones. 

Agent-based approaches have been explored by other researchers for simulating 
supply chains. Swaminathan et al. (1998) proposed a multi-agent approach for modelling 
supply chains. They believed a multi-agent approach was ‘a natural choice’ for 
modelling supply chains because ‘supply-chain management is fundamentally concerned 
with coherence among multiple decision makers’ (Swaminathan et al., 1998). They 
modelled structural elements as agents, which interacted with each other using control 
elements. Our agent-based research follows the same line but one of our improvements is 
to introduce a meta-model for supply chains and formally define its semantics. 

On the implementation side, Rossetti et al. (2007) proposed an objective-oriented 
framework for simulating supply chains. The work is based on a generic simulation 
package JSL developed by Rossetti (2008). Although the framework and its 
implementation provide some flexibility for an analyst to customise decision logic of a 
node, the internal structure of a node is fixed and the analyst cannot change it. In this 
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work we propose an object-oriented type system that supports the customisation of the 
decision logic of a node. In addition, the meta-model in Section 3 allows an analyst to 
customise the internal structure of a node. 

3 An agent-based meta-model for supply chains 

Agent-based modelling studies interactions among autonomous agents. A typical  
supply-chain consists of elements such as facility nodes and routes that interact with each 
other via orders, shipments, and other communication methods. The complexity of a 
large-scale supply chain arises not only from dynamics of individual elements, but also 
from interactions among these elements. This makes supply chains an ideal application 
for agent-based modelling. Our modelling technique is based on the agent-based 
modelling technique with special attention for extensibility. 

In our framework, elements of a supply chain are modelled as autonomous agents 
with their own decision logics. Types of these elements range from facility nodes (e.g., 
warehouses, suppliers, and retailers, etc.), to transportation links (e.g., routes), to  
special-purpose elements (e.g., order processing centre). Agent modelling is the first step 
of our modelling workflow and it is also at the core of our proposed framework. Agent 
modelling includes physical modelling and behaviour modelling. Our goal for agent 
modelling is to define a general and extensible meta-model that can 

1 model a variety of elements of a supply chain including facility nodes and routes 

2 provide a rigid syntax and semantics definition for an element. 

Definition 1 gives the formal definition of an element. Next, we model the interface of an 
element using ports (Definition 2), then proceed to behaviour modelling including 
merchandise transformation (Definition 2), message sending (Definition 7), and delivery 
decision (Definition 8). Finally, we discuss constraints (Definition 9) imposed on an 
agent. 

Definition 1 (Element): An element of a supply chain is defined as a tuple 
, , , , , ,〈 〉t m dP U f f f C  where P  is a set of ports, U  is a set of modes, tf  is a merchandise 

transformation function, mf  is a message sending function, df  is a delivery decision 
function, and C C is a set of constraints. 

To model an element, we need to model its internal and external behaviours. The former 
defines how merchandise move within the boundary of an element, and the latter defines 
how elements interact with each other via shipment and message-based communication. 

3.1 Ports and deliveries 

The interface of an element is defined by ports. Depending on the direction of its 
merchandise flow, a port is either an in-port or an out-port. A duplex port may be defined 
as a combination of an in-port and an out-port. Each port may buffer the merchandise 
flow up to a given inventory size. 

An element may consist of both in- and out-ports. These ports are the interface of the 
element via which the element receives and/or delivers merchandise. Definition 2 gives 
the formal definition of ports. We use the following notations in the rest of this paper: we 
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denote .a p  for port p  of element ,a  and . .a p inv  for inventory at port .p  We denote 
. +a P  and . −a P  for all ’sa  in-ports and out-ports, respectively. We write . (or . )+ −AP AP  

in lieu of . ( . ).+ −
∈ ∈∪ ∪a A a Aa P or a P  We denote Z  for the set of all the integers, and R  

for the set of all the real numbers. +Z  and +R  represent the non-negative subsets of Z  
and ,R  respectively. 

Definition 2 (Ports): A port may contain its own buffer. It is either an in- or out-port. 
Formally, the state of a port is defined as a tuple , ,= 〈 〉p inv dir  where +∈inv Z  is the 
amount of merchandise stacked at p  and { , }∈ + −dir  is the direction of the port. p  is an 
input port if . ,= +pdir  or an output port if otherwise. 

Definition 3 (Deliveries): Let −p  be an out-port of an element that is connected to input 
ports 1 ,...,+ +

lp p  of some elements, a delivery from −p  is a vector � 1 ,..., ,δ δ δ+ +− −− = 〈 〉lp p p pp  
where δ +∈j Z  is the amount of merchandise delivered to +

jp  from .−p  

By Definition 3, a delivery at an out port −p  is characterised by the amounts of 
merchandise delivered to receiving in-ports. The total delivery received by an element a  
in a supply chain S  is defined as, 

. .
p p

p P p a P

δ − +

− − + +∈ ∈
∑ ∑
S �

 

The total delivery sent by a  is defined as, 

. .
p p

p P p a P

δ − +

+ + − −∈ ∈
∑ ∑
S �

 

3.2 Behaviour modelling 

Definition 4 (Modes and states): A state of an agent a  is defined as a tuple 
1. ,..., . , ( ) ,+〈 〉 ∈ ×llp inv p inv u Z U  where .ip inv  is the inventory of ith port of a  and U  is 

the set of ’sa  modes. 

A state of the element is defined by its mode and inventory at its ports. We use the 
following notations in the rest of the paper: given a state 1. ,..., . , ,= 〈 〉ls p inv p inv u  

1[ . . ]′← is p inv p inv  is a new state s ′  obtained by replacing ’sip  inventory .ip inv  by 
. ,′ip inv  i.e., 1. ,..., . ,..., .′ ′= 〈 〉ls p inv p inv u  Similarly, [ ]s u u ′←  is a new state obtained by 

replacing mode u  in s by .u ′  
In our agent-based framework, the behaviour of an element is defined by its internal 

merchandise transformation, message sending and processing, and delivery decisions. 

Internal merchandise transformation: Internal merchandise transformation depicts 
activities that produce and/or transport merchandise inside an element. In case of a route, 
merchandise is moved from its receiving in-port to its out-port. In case of a 
manufacturing site, raw materials received at in-ports are transformed into finished 
products at out-ports. 

Definition 5 (Merchandise transformation functions): A merchandise transformation 
function of an element a  has form of : ,→tf S S  where S  is the set of ’sa  states.  
In addition, 1 2 1 2( . . , . . ,..., . . , ) . . , . . ,..., . . ,′ ′ ′ ′〈 〉 = 〈 〉l lp p p p p pf a inv a inv a inv u a inv a inv a inv u  
satisfies the following constraints, 
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1 . . . . 0k ka p inv a p inv′ − ≤  if kp  is an out-port. . . . .k ka p inv a p inv′ −  represents the 
amount of merchandise consumed at port .kp  

2 . . . . 0k ka p inv a p inv′ − ≥  if kp  is an in-port. . . . .k ka p inv a p inv′ −  represents the 
amount of merchandise produced at port .kp  

Definition 5 is general enough to describe a variety of internal merchandise 
transformation activities. For a manufacturing site , . . . .k ka a p inv a p inv′ − represents the 
amount of raw material consumed if . ka p  is an in-port, and the amount of finished 
products produced if . ka p  is an out-port. It should be noted that a merchandise 
transformation function does not restrict types of raw materials and finished products. 
Raw materials and finished products can be different types of merchandise, and in reality, 
they often are. 

For a route, . . . .k ka p inv a p inv′ −  represents the amount of merchandise being 
transported. The transportation of merchandise does not have to occur instantaneously. 
Transportation delay can be modelled in the meta-model. This can be done by, for 
example, further decomposing modes and introducing finite queues. In such a case, the 
amount consumed at an in-port is not instantly transferred to out-ports; instead, it is 
pushed to a finite queue, and the amount transferred to out-ports is dequeue from the 
same queue. Since the size of an internal queue and its content are finite, the status of the 
queue can be encoded as part of modes. 

Message sending and processing. In our agent-based framework, elements communicate 
with each other through messages. Each message contains a receiving element (receiver) 
and an action. An action triggers a transition of mode at its receiver. A receiver processes 
a message and changes the element's mode as the result. 

Definition 6 (Actions and messages): An action α  of an agent a  is defined as a function 
,U U→α :  where U  is the set of ’sa  modes. A message for agent a  is a tuple , ,a〈 〉α  

where α  is an action of .a  

Definition 7 (message sending function): Let S  be a supply chain, a message sending 
function of an agent a  in S  is a function : 2→ M

mf S  where S  is the mode of ,a  and 
M  is the set of messages generated in .S  

Message sending function in Definition 7 describes how messages are generated by 
elements. Based on its mode, an element may send a set of messages and enter the next 
mode. Once generated, a message is routed to its destination. The set of messages sent by 
an element may also be empty, meaning that it does not send out any message at the 
current mode. Such a mode is called a silent mode. 

Delivery decision: Delivery decisions made by an agent are defined by a delivery 
decision function. A delivery decision function decides how much merchandise an  
out-port shall deliver and how it shall be distributed to the in-ports connected to the  
out-port. A delivery decision function makes its decision based on the current state. 
Definition 8 gives the formal definition of Delivery Decision Function. In other words, a 
delivery decision function has form of 1 11 1 1 1 1 0( ) ( ,..., ,..., ,..., ),δ δ δ δ− + − + − + − += 〈 〉 〈 〉q m m mqmp p p p p p p pdf s  
where 1,...,− +

i iqip p  are in-ports connected to agent ’sa  ith out-port ,−ip  and 
1 0,...,δ δ− + − +〈 〉iqii ip p p p  is an outgoing delivery at .−ip  

Definition 8 (Delivery Decision Function): Let S  be a supply chain and a  be an element 
of S  with m  out-ports. A delivery decision function of agent a  is a function 
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� �
1: ( ... ),δ δ− −→ × × mp pdf S  where S is the set of states of ,a  and � 1δ −

p  is an outgoing delivery 
at out-port .−ip  

3.3 Constraints 

In our framework, an element may be imposed with a set of constraints. Constraints can 
be used to model physical or logical limitations imposed on an agent. For example, 
constraint can be used to model a facility a with limited inventory space ,V  in which 
case a constraint for a can be defined as 

. .
. ,

p a P a P
p inv V+ −∈

≤∑ ∪
 where . .a P a P+ −∪  is 

the set of all the ’sa  ports. 

Definition 9 (Constraints): Let S  be a supply chain. A constraint for element a  is a 
predicate c  over states of ,a  that is, :c S →  {true, false}, where S  is the set of ’sa  
states. An execution ρ  of S  is invalid if an agent a  can reach a state s  such that ( )c s  
is false, where c  is one of ’sa  constraints. 

3.4 Examples and special cases 

Our agent-based framework is general enough to define the structures and behaviours of 
a variety of elements. For example, let us consider two very different categories of 
elements: facility nodes and routes. A route is a special kind of element that has precisely 
1 in-port and 1 out-port. Its merchandise transformation function transfers merchandise 
from the in-port of a route to its out-port, often with delay. The delay may be the result of 
multiple factors such as route scheduling and transportation delay. 

Facility nodes may be further classified to several categories. For example, a retailer 
has only in-ports. Its internal merchandise function models the consumption of 
merchandise at its demand rate. A warehouse has both in- and out-ports. Its merchandise 
transformation function and delivery function shall satisfy the flow balance equation. 
That is, its inventory before an update plus incoming deliveries shall be the same as its 
inventory after the update minus outgoing deliveries. 

An advantage of our framework is that an analyst can define his/her own type of 
elements for target supply-chain applications. For example, in a traditional retail setting, 
a supplier has only out-ports, but for companies like Dell, a supplier’s site also has 
manufacturing capability. In such a case, a supplier node has both in- and out-ports. Its 
merchandise function models how raw materials are consumed at in-ports and finish 
products are produced at out-ports. 

4 Supply-chain semantics and simulation 

We formally define the meaning of the meta-model using its simulation semantics. That 
is, the semantics of a supply-chain model in our framework is defined by its simulation 
traces. Algorithm 1 defines our simulation algorithm. 

Semantically, a supply-chain model is a synchronous system extended with messages. 
Each iteration in Algorithm 1 simulates a clock update. A clock update is a basic time 
unit in supply-chain planning. Depending on planning horizon of underlying  
supply-chain operations, an update may represent a hour, a day, or a month, etc. Each 
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iteration starts with internal merchandise transformation: lines 2–5 call the merchandise 
transformation function of each agent. As a result, an element enters its next state and 
sends out messages as defined in its message sending function. In general, whenever an 
element changes its state, its message sending function is called to check if the element 
needs to inform others of the change of its state via messages. 

Algorithm 1 Simulate ( )S  

Require: A supply chain with S  with a set of agents A, where each agent a A∈  has a start state 

0
as  

1 while true do 

2  for all a A∈  do 

3   ( );a a
ts f s=  

4   ( )a a
mM M f s= ∪  

5  end for 

6  processMsg( ) 

7  for all a A∈  do 

8   //Suppose a  has k  out-ports 1 ... kp p− −  

9   � �
1( ,..., ) ( );k

a
p p df sδ δ− − =  

10   for all 1{ ,..., }kp p p− − −∈  do 

11    // p−  is connected to 1 ... qp p+ +  

12    �
1

,...,
q

pp p p pδ δ δ −
− + − +〈 〉 =  

13    for all 1{ ,..., }qp p p+ + +∈  do 

14     // p+  belongs to agent .d  

15     1[ . . ( . . )]d d
qs s d p inv d p inv p pδ+ + −= ← +  

16     ( )d d
mM M f s= ∪  

17    end for 

18    
1

[ . . ( . . .. . )]
q

a a
p p p ps s a p inv a p inv δ δ− + − +

− −= ← − −  

19    ( )a a
mM M f s= ∪  

20   end for 

21  end for 

22  processMsg( ) 

23 end while 
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Algorithm 2 processes messages generated by elements. During every iteration, it takes a 
message ,b〈 〉β  from a message pool M and applies action β  on element .b  β  may 
change the mode of .b  Element b  may generate messages at the new mode, or its new 
mode can be a silent mode with no message being sent. Algorithm 2 uses a  
run-to-completion semantics. That is, it exits only after the message pool is empty. 

Algorithm 2 ProcessMsg( ) 

1 while ≠M /0 do  

2  { }M M m= −  // Take a message m  from ;M  

3  , ;b m〈 〉 =β  

4  [ ( )];b b b bs s u u= ← β  

5  ( );b b
mM M f s= ∪  

6 end while 

Next, Algorithm 1 calls every element's delivery decision function to compute deliveries. 
To realise a delivery, it subtracts inventory at an out-port and adds it to the connected in-
ports. A delivery can also change the states of sending and receiving elements by 
changing their inventories at ports. The change of states may cause these agents to send 
out messages. Algorithm 2 is called afterward to process these messages. 

5 An object-oriented type system for defining supply-chain elements 

To ease difficulty in defining new types of elements and promote the design reusability, 
we introduce an object-oriented type system for defining custom types of elements. The 
UML class diagram in Figure 1 shows the outline of the type system. The design of the 
type system follows the meta-model introduced in Section 3. At the top of the hierarchy 
is a built-in abstract type Agent, which serves as the base class for all the types of 
elements. Agent summarises the attributes and methods common to all the supply-chain 
elements. As defined in the meta-model, the interface of an element has in-ports and  
out-ports. The attributes shared by in-ports and out-ports such as inventory are encoded in 
the built-in abstract type Port. An association between Agents is implemented via in-ports 
and out-ports. Element types subclassing Agent may choose to restrict such association. 
For instance, a retailer may choose to restrict the association to in-ports only. 

The design of Agent follows the strategy design pattern (Gamma et al., 1994). A 
strategy is a collection of functions that define the decision logics central to the behaviour 
of an element. The syntax and semantics of these functions are introduced in Section 3.2 
as part of our meta-model for supply-chain elements. The merchandise transformation 
function ( )mtf  defines an element’s internal merchandise flow, the message sending 
function ( )msf  defines communications among elements, and the delivery decision 
function ( )ddf  defines distributions of merchandise at out-ports. The hierarchy of 
strategy classes assembles the hierarchy of agent classes. Figure 1 shows a generic node 
strategy ( )NodeStrat  and a generic route strategy ( ).RouteStrat  The generic route 
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strategy defines the behaviour common to all the routes. Since a route typically does not 
send a message, RouteStrat  implements a null ,msf  and since a route usually 
deliveries all the merchandise at its out-port to its destination, ddf of RouteStrat  simply 
moves merchandise at the out-port of a route to the in-port of its attached node. 
Nevertheless, mtf  is more complicated and its logic depends on factors such as route 
scheduling and transportation delay. mtf  is declared as an abstract method in 
RouteStrat  and its actual implementation is deferred to actual route classes. The 
strategy design pattern decouples decision logics and their hosts. Such separation adds 
additional flexibility to agent modelling. For instance, nodes with the same structure may 
be associated with different decision logics. An add-on benefit of adopting the strategy 
design pattern is that an agent can change its strategy on-the-fly. This feature is especially 
useful when one models an adaptive supply chain, which changes its policy based on its 
environment. 

To define a new type of element, an analyst starts with subclassing Agent or one of its 
descendants. Each subclass may define new behaviour and/or add constraints. For 
example, 

Node class may restrict the type of its inherited attribute strategy to ,NodeStrat  so 
only a strategy of type NodeStrat or its descendants can be used by a Node object. As 
another example, a Node class may choose to introduce a new function for checking its 
inventory. Class inheritance reduces the overhead of defining a new type of element. 
Note that a type on a lower layer of the hierarchy automatically inherits the behaviours of 
its ancestors. To define a new type, an analyst may choose to subclass the lowest type in 
the hierarchy that is a generalisation of the new type. This allows the analyst to focus on 
behaviours and constraints unique to the new type, and at the same time inherit the 
generalised logic from the ancestors of the new type. For example, in Figure 1, the type 
definition of a retailer with just-in-time restocking policy ( )JITStore  may start as a 
subclass of a more general type Retailer. 

6 Implementation 

We implemented an initial prototype of the proposed agent-based formal framework in 
SIMRISK. SIMRISK is an integrated tool for supply-chain modelling, simulation, and 
risk analysis. It implements a visual integrated development environment (IDE). Its IDE 
provides three different views of a supply chain: a hierarchical presentation of elements 
of the supply chain (tree view), a geographic view of elements (network view), and a 
property page for displaying attributes of a selected element (property view). SIMRISK 
IDE can visualise the on-the-fly status of a simulation. For example, it shows the 
animation of shipments during a simulation. Besides a normal simulation mode in which 
a user can start, pause, and stop a simulation, SIMRISK also provides a batch mode for 
numerical experiments. During the batch mode, all the non-essential status displays are 
disabled to reduce computational overhead. In the spirit of the tools extensibility, the 
design of SIMRISK’S graphic user interface also supports the display of information 
specific to custom-defined element types: SIMRISK provides a graphic handler to a 
custom-defined type package, and the package can use the handler to display attributes of 
an element of custom-defined type. Figure 2 shows a snapshot of SIMRISK'S visual IDE. 
SIMRISK is written in Java. 
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Figure 1 The object-oriented type system developed by SIMRISK (see online version for colours) 
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Figure 2 The IDE of SIMRISK (see online version for colours) 
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Figure 3 The architecture design of SIMRISK (see online version for colours) 
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Figure 3 shows the architecture design of SIMRISK, presented as a UML component 
diagram. To achieve a higher extensibility, a key feature of SIMRISK is to separate the 
operational semantics of a supply chain from its topology. The requirement for defining 
the operational semantics of a supply chain is designated by an interface for strategy. An 
analyst can define his/her own types of elements, as long as she/he supplies the necessary 
details as required by the strategy interface. The topology package stores the physical 
structure of a supply chain. It defines, for example, the locations of nodes and how they 
are connected by routes. In other words, the topology package defines geographic 
locations of elements and the custom-defined type package specifies their semantics as 
defined in Section 3. To test different supply-chain policies on the same network 
structure, an analyst can switch between different strategies on-the-fly. SIMRISK 
implements an event-driven simulation engine as outlined in Algorithm 1. 

7 Conclusions and future works 

We proposed an extensible object-oriented and agent-based formal framework for 
modelling and simulating supply chains. This research work made the following 
contributions to supply-chain modelling and analysis: first, we developed an agent-based 
approach that supports custom-defined element types. Both the behaviour and internal 
structure of a node are customisable; second, to promote the design reusability, the 
proposed framework incorporates an object-orient type system to simplify the work of 
defining a new type of element. The type system allows an analyst to inherit common 
behaviour and structure form existing elements, and to focus on the features unique to the 
new type of element; third, we introduced a meta-model for supply chains and formally 
define its semantics. The formalism we introduced defines the interface of an element 
(Section 3.1), its internal and external behaviours (Section 3.2), and its constraints 
(Section 3.3); finally, we proposed a discrete-event simulation algorithm. The algorithm 
also defined the simulation semantics of the meta-model. 

There are several directions to extend this research. For instance, multi-core hardware 
could be an excellent platform for our agent-based framework, with elements running on 
different cores and communications expedited by shared memory. We plan to study the 
parallel simulation of the agent-based framework on multi-core hardware. Specifically, 
we will develop a generative simulation technique that is capable of generating 
simulation code optimised for a specific multi-core architecture. Another possibility is to 
provide a tighter integration between simulation-based approach and formal analysis 
approach. Currently SIMRISK can translate a supply-chain model with elements of  
built-in types to an extended Markov decision process for formal analysis. In the future, 
we want to extend formal analysis to supply-chain models with custom-defined element 
types. 
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