

 Int. J. Information and Decision Sciences, Vol. 4, Nos. 2/3, 2012 251

 Copyright © 2012 Inderscience Enterprises Ltd.

An extensible object-oriented and agent-based
framework for modelling and simulating supply
chains

Li Tan*
School of Electrical Engineering and Computer Science,
Washington State University,
Richland, WA 99354, USA
E-mail: litan@wsu.edu
*Corresponding author

Shenghan Xu
College of Business and Economics,
University of Idaho,
Moscow, ID 83843, USA
E-mail: shenghan@uidaho.edu

Benjamin Meyer and Brock Erwin
School of Electrical Engineering and Computer Science,
Washington State University,
Richland, WA 99354, USA
E-mail: berwin@wsu.edu

Abstract: We propose an extensible object-oriented agent-based framework for
modelling and simulating supply chains. A problem with existing supply-chain
analysis tools is that most of them are designed only for specific configurations
of supply chains. The primary goal of this work is to provide an open and
extensible framework for analysing supply chains with heterogeneous elements
and structures. Our framework incorporates the following features:

1 It adopts an agent-based approach to handle interactions among elements of
a supply chain, and an analyst can introduce new types of elements for a
specific application;

2 To promote the design reusability, we propose an object-oriented type
system that supports behaviour inheritance;

3 The framework formally defines a meta-model for elements of a supply
chain;

4 The framework includes a discrete-event simulation algorithm, which
defines interactions among elements via messages and deliveries.

We also discuss SIMRISK, our Java implementation of the framework.

Keywords: agent-based modelling and simulation; design extensibility; formal
semantics; supply chains.

 252 L. Tan et al.

Reference to this paper should be made as follows: Tan, L., Xu, S., Meyer, B.
and Erwin, B. (2012) ‘An extensible object-oriented and agent-based
framework for modelling and simulating supply chains’, Int. J. Information and
Decision Sciences, Vol. 4, Nos. 2/3, pp.251–267.

Biographical notes: Li Tan received his PhD in Computer Science in 2002
from State University of New York at Stony Brook. He is an Assistant
Professor in the School of Electrical Engineering and Computer Science,
Washington State University, the USA. His research interests include formal
verification, software testing, model-based design, and supply-chain modelling
and analysis.

Shenghan Xu received her PhD in Operations Management from the University
of Massachusetts Amherst, the USA. She is an Assistant Professor in the
College of Business and Economics, the University of Idaho, the USA. Her
research interests fall into the area of supply-chain management, especially in
supply-chain consolidation, risk analysis, and network optimisation.

Benjamin Meyer received his BS in Computer Science from Washington State
University Tri-Cities. His research interests include supply-chain modelling
and analysis, and computational music science.

Brock Erwin is an undergraduate student in Washington State University
Tri-Cities. His research interests include supply-chain analysis and high
performance simulation of biological systems.

This is a revised and expanded version of a paper presented at the 2009 IEEE
International Conference on Information Reuse and Integration (IRI’09), Las
Vegas, Nevada, USA, 10–12 August 2009.

1 Introduction

Supply chains concern the movement of merchandise from suppliers to customers’ hands.
With increasing integration of the world’s economy, the size and the complexity of
global supply chains are rising rapidly, and so is the reliance of our economy on these
supply chains. Understanding and optimising the behaviours of these large-scale global
supply chains are essential for a variety of topics in supply-chain management, including
supply-chain risk management (Chen and Zhang, 2008), contracting (van Delft and Vial,
2004), and performance evaluation (Wei et al., 2007). To reduce cost and maintain profit
margin, many companies engage themselves in global supply-chain expansion involving
different elements of supply chains such as suppliers, distributors, retailers, and logistics
providers across multiple continents (Ferrer and Karlberg, 2006). For example, Costco
operates its 544 warehouse stores in North America, South America, Asia, and Europe. It
sources merchandise from all over the world (Costco Wholesale Corporation, 2007).
Geographically, the participants of a global supply chain are distributed across
continents. Generally, these participants act as autonomous agents with their own
business logic and they answer to their own continency. A research question is how to
model and analyse a supply chain with a diversified profile of elements.

The primary goal of this work is to provide an open and extensible framework for
modelling and analysing heterogeneous supply chains. The structure and behaviour of a

 An extensible object-oriented and agent-based framework 253

supply chain are heavily influenced by its underlying business model and market. For
example, Walmart’s supply-chain operation follows a more traditional setting. It contains
multiple echelons of suppliers, distribution centres, and stores. In contrast, Dell uses a
direct channel approach that eliminates intermediate layers. These two supply chains
differ not only in structure, but also in functionality and strategy at the element level. For
example, in Dell's ‘build-to-order’ model, supplier sites have manufacturing capabilities
that can assemble custom-built computers, whereas for most retail chains, suppliers are
simply warehouses of merchandise providers. Because of the differences and complexity
in supply-chain operations, most existing supply-chain tools choose to target at only a
specific set of supply chains with limited extensibility. These tools have a limited
capability in terms of how much an analyst can extend the tools for his/her own
application: although many of the existing tools allow an analyst to instantiate new
elements from existing types, they provide limited [e.g., GBSE (Wang et al., 2008)] or no
option [e.g., EasySC (Liu et al., 2004)] for an analyst to introduce a new type of element
or redefine the behaviour of an existing type. This shortcoming severely restricts the
development and use of general-purpose supply-chain modelling and analysis tools, since
limited built-in element types cannot meet the demand of modelling diversified profiles
of supply chains that real-world companies operate. This work is to address this
shortcoming by proposing an extensible object-oriented and agent-based framework.
Since supply chains are heavily influenced by their underlying business models and
markets, one can never anticipate types of elements that may appear in a real-world
supply chain. So instead of restricting an analyst to a set of predefined types of elements,
we provide his/her a higher degree of flexibility by supporting custom-defined types of
elements. Using our object-oriented and agent-based formal framework, an analyst can
instantiate an existing element type and/or introduce a new type of element. Furthermore,
to improve design reusability, our framework allows an analyst to define a new type of
element by inheriting the attributes and behaviours of an existing type.

The proposed framework makes the following contributions with the focus on
improving the extensibility and reusability of supply-chain analysis tools: first, the
framework uses an agent-based approach that supports custom-defined element (agent)
types. The framework models supply-chain elements as autonomous agents, and it
provides common functionalities for studying interactions between elements. Analysts
can define their own types of elements for underlying supply-chain applications; second,
to promote the design reusability and ease the difficulty in introducing a new type of
element, the framework incorporates an object-oriented type system that supports
behaviour inheritance. An analyst can focus on defining behaviour unique to a new type
of element, while inherits common behaviour from existing types; third, the framework
defines a meta-model for supply chains and formally defines its semantics. The
meta-model provides a behavioural and structural abstraction of various supply-chain
models. The formal semantics removes ambiguity in defining, interpreting, and validating
a supply-chain model; finally, based on the formal semantics of the meta-model, we
propose a discrete-event simulation engine for simulating supply chains.

Our framework uses an agent-based approach for modelling and analysing complex
supply-chain systems. With a growing number of businesses considering overseas
suppliers as a way to cut cost, a global supply-chain operation often consists of a large
number of facility nodes including suppliers, warehouses, and retailers, each of which
can be seen as an (semi-)autonomous decision-maker. Agent-based approach has been

 254 L. Tan et al.

successfully used to study a wide range of complex systems (Axelrod, 1997). These
systems typically consist of groups of autonomous agents. Agent-based modelling can
trace its root back to Von Neumann’s theory on cellular automaton (Neumann, 1966), but
it gets its deserved attention only recently because the advance in computing hardware
makes it a reality to simulate interactions between a large collection of agents on even
commercial off-the-shelf (COTS) computers, and emerging multi-core desktop
computing platforms accelerate such trend.

We adopt an agent-based approach because the challenge of simulating complex
supply chains is the exact problem the agent-based modelling technique is prescribed for:
although the behaviour of each facility node may be simple to understand, the overall
behaviour of a supply chain as the result of interactions among these nodes is not. Our
framework models elements of a supply chain as agents, which include facility nodes
(e.g., warehouses), transportation links (e.g., routes), and other special-purpose elements.
To improve extensibility, the framework provides several layers of abstraction that
separate common functionalities from the decision logics and the physical structures
unique to each type of element: first, the framework makes a clear distinction between
internal behaviours of elements of a supply chain and their interactions. The framework
provides common functionalities such as message passing for modelling interactions
among agents, whereas it leaves the definition of internal behaviour and structure of an
element to the discretion of an analyst; second, the framework provides a meta-model for
supply-chain elements. The meta-model abstracts common behaviours and structures of
elements. For example, the meta-model defines a structural interface including ports, and
it also provides a skeleton for defining common internal behaviours such as internal
merchandise transformation. To define a new type of element, an analyst only needs to
fill in the decision logic unique to that type of the element.

A distinctive feature of our framework is that it introduces a formal syntactical and
semantical definition of the meta-model. A common problem for existing supply-chain
tool (cf. Liu et al., 2004) is that they often provide only a narrative and casual description
of the semantics of a supply-chain model. Without a rigorous definition of a supply-chain
model, it often falls into one’s guess work to precisely understand a supply-chain model
and unambiguously interpret analysis result. Moreover, a casual definition of the
semantics of a model makes it harder to validate analysis result since the expected
behaviour of a supply-chain model is not rigidly defined. For the same reason, lack
of formal semantics makes it harder to tell bugs from legitimate features in tools
implementations. The formalism we introduced has several benefits: it helps validate
simulation results and also reduces errors in tool implementations; the formalism also
facilitates formal analysis of a supply chain. For example, our formal framework supports
a model-checking-based risk analysis approach proposed by Tan and Xu (2008).

To reduce overhead in defining a new type of element and improve the design
reusability, we propose an object-oriented type system. In the type system, types of
elements are defined as classes and elements are instances of these element classes. The
type system supports the design reuse by class inheritance. For example, when defining a
new type of element, say, a special type of warehouse, an analyst can inherit common
functions and interfaces from a base warehouse class, and override only those of the
methods representing the decision logic and the internal structure unique to the new type
of warehouse.

To see our proposed framework in action, we developed a discrete-event simulation
algorithm and implemented the framework in Java. Simulation remains as an important

 An extensible object-oriented and agent-based framework 255

tool for analysing the behaviour of a supply chain. Compared with other methods such as
stochastic analysis, simulation does not heavily tax one’s theoretical background and
analysis skills. Simulation results can be visualised and explained to executives and other
stakeholders with little or no background on supply-chain management. With the
introduction of more powerful hardware, especially emerging multi-core architecture,
there are renewed interests in recent years in desktop-based simulation tools for supply
chains (Wang et al., 2008). The simulation algorithm provides the guideline for
implementing a discrete-event simulation engine for the framework. It is also part of our
formal framework in which it defines simulation semantics of a supply-chain model.

The rest of the paper is organised as follows: in Section 2 we discuss related works; in
Section 3 we introduce a meta-model for formally defining supply-chain elements. The
meta-model defines the interface of an element (Section 3.1), its internal and external
behaviours (Section 3.2), and constraints (Section 3.3). In Section 4, we introduce our
simulation algorithm and define a simulation-based formal semantics for a supply-chain
model. In Section 5, we propose an object-oriented type system based the meta-model to
promote the design reusability and to reduce the overhead of defining a new type of
element. In Section 6, we discuss SIMRISK, a prototype implementation of our proposed
framework. Finally, Section 7 concludes the paper and discusses future research
directions on this subject.

2 Related works

Supply-chain modelling and simulation have attracted much research interest recently.
For instance, Liu et al. (2004) introduced a Java-based supply-chain simulation tool
Easy-SC. In Easy-SC modelling environment, facility nodes are instantiated from six
predefined enterprise node types, and routes were defined as connecting arcs between
facility nodes. Wang et al. (2008) discussed a general business simulation environment
(GBSE) developed in IBM China research lab. GBSE is a Java-based event-driven
simulation tool built on top of the Eclipse platform. GBSE defines three types of facility
nodes and one type of link. These tools provide limited (e.g., GBSE) or no option (e.g.,
EasySC) for an analyst to define a new type of element. In contrast, our approach
improves the tools extensibility and the design reusability by allowing an analyst to
define his/her own types of elements and/or to redefine existing ones.

Agent-based approaches have been explored by other researchers for simulating
supply chains. Swaminathan et al. (1998) proposed a multi-agent approach for modelling
supply chains. They believed a multi-agent approach was ‘a natural choice’ for
modelling supply chains because ‘supply-chain management is fundamentally concerned
with coherence among multiple decision makers’ (Swaminathan et al., 1998). They
modelled structural elements as agents, which interacted with each other using control
elements. Our agent-based research follows the same line but one of our improvements is
to introduce a meta-model for supply chains and formally define its semantics.

On the implementation side, Rossetti et al. (2007) proposed an objective-oriented
framework for simulating supply chains. The work is based on a generic simulation
package JSL developed by Rossetti (2008). Although the framework and its
implementation provide some flexibility for an analyst to customise decision logic of a
node, the internal structure of a node is fixed and the analyst cannot change it. In this

 256 L. Tan et al.

work we propose an object-oriented type system that supports the customisation of the
decision logic of a node. In addition, the meta-model in Section 3 allows an analyst to
customise the internal structure of a node.

3 An agent-based meta-model for supply chains

Agent-based modelling studies interactions among autonomous agents. A typical
supply-chain consists of elements such as facility nodes and routes that interact with each
other via orders, shipments, and other communication methods. The complexity of a
large-scale supply chain arises not only from dynamics of individual elements, but also
from interactions among these elements. This makes supply chains an ideal application
for agent-based modelling. Our modelling technique is based on the agent-based
modelling technique with special attention for extensibility.

In our framework, elements of a supply chain are modelled as autonomous agents
with their own decision logics. Types of these elements range from facility nodes (e.g.,
warehouses, suppliers, and retailers, etc.), to transportation links (e.g., routes), to
special-purpose elements (e.g., order processing centre). Agent modelling is the first step
of our modelling workflow and it is also at the core of our proposed framework. Agent
modelling includes physical modelling and behaviour modelling. Our goal for agent
modelling is to define a general and extensible meta-model that can

1 model a variety of elements of a supply chain including facility nodes and routes

2 provide a rigid syntax and semantics definition for an element.

Definition 1 gives the formal definition of an element. Next, we model the interface of an
element using ports (Definition 2), then proceed to behaviour modelling including
merchandise transformation (Definition 2), message sending (Definition 7), and delivery
decision (Definition 8). Finally, we discuss constraints (Definition 9) imposed on an
agent.

Definition 1 (Element): An element of a supply chain is defined as a tuple
, , , , , ,〈 〉t m dP U f f f C where P is a set of ports, U is a set of modes, tf is a merchandise

transformation function, mf is a message sending function, df is a delivery decision
function, and C C is a set of constraints.

To model an element, we need to model its internal and external behaviours. The former
defines how merchandise move within the boundary of an element, and the latter defines
how elements interact with each other via shipment and message-based communication.

3.1 Ports and deliveries

The interface of an element is defined by ports. Depending on the direction of its
merchandise flow, a port is either an in-port or an out-port. A duplex port may be defined
as a combination of an in-port and an out-port. Each port may buffer the merchandise
flow up to a given inventory size.

An element may consist of both in- and out-ports. These ports are the interface of the
element via which the element receives and/or delivers merchandise. Definition 2 gives
the formal definition of ports. We use the following notations in the rest of this paper: we

 An extensible object-oriented and agent-based framework 257

denote .a p for port p of element ,a and . .a p inv for inventory at port .p We denote
. +a P and . −a P for all ’sa in-ports and out-ports, respectively. We write . (or .)+ −AP AP

in lieu of . (.).+ −
∈ ∈∪ ∪a A a Aa P or a P We denote Z for the set of all the integers, and R

for the set of all the real numbers. +Z and +R represent the non-negative subsets of Z
and ,R respectively.

Definition 2 (Ports): A port may contain its own buffer. It is either an in- or out-port.
Formally, the state of a port is defined as a tuple , ,= 〈 〉p inv dir where +∈inv Z is the
amount of merchandise stacked at p and { , }∈ + −dir is the direction of the port. p is an
input port if . ,= +pdir or an output port if otherwise.

Definition 3 (Deliveries): Let −p be an out-port of an element that is connected to input
ports 1 ,...,+ +

lp p of some elements, a delivery from −p is a vector � 1 ,..., ,δ δ δ+ +− −− = 〈 〉lp p p pp
where δ +∈j Z is the amount of merchandise delivered to +

jp from .−p

By Definition 3, a delivery at an out port −p is characterised by the amounts of
merchandise delivered to receiving in-ports. The total delivery received by an element a
in a supply chain S is defined as,

. .
p p

p P p a P

δ − +

− − + +∈ ∈
∑ ∑
S �

The total delivery sent by a is defined as,

. .
p p

p P p a P

δ − +

+ + − −∈ ∈
∑ ∑
S �

3.2 Behaviour modelling

Definition 4 (Modes and states): A state of an agent a is defined as a tuple
1. ,..., . , () ,+〈 〉 ∈ ×llp inv p inv u Z U where .ip inv is the inventory of ith port of a and U is

the set of ’sa modes.

A state of the element is defined by its mode and inventory at its ports. We use the
following notations in the rest of the paper: given a state 1. ,..., . , ,= 〈 〉ls p inv p inv u

1[. .]′← is p inv p inv is a new state s ′ obtained by replacing ’sip inventory .ip inv by
. ,′ip inv i.e., 1. ,..., . ,..., .′ ′= 〈 〉ls p inv p inv u Similarly, []s u u ′← is a new state obtained by

replacing mode u in s by .u ′
In our agent-based framework, the behaviour of an element is defined by its internal

merchandise transformation, message sending and processing, and delivery decisions.

Internal merchandise transformation: Internal merchandise transformation depicts
activities that produce and/or transport merchandise inside an element. In case of a route,
merchandise is moved from its receiving in-port to its out-port. In case of a
manufacturing site, raw materials received at in-ports are transformed into finished
products at out-ports.

Definition 5 (Merchandise transformation functions): A merchandise transformation
function of an element a has form of : ,→tf S S where S is the set of ’sa states.
In addition, 1 2 1 2(. . , . . ,..., . . ,) . . , . . ,..., . . ,′ ′ ′ ′〈 〉 = 〈 〉l lp p p p p pf a inv a inv a inv u a inv a inv a inv u
satisfies the following constraints,

 258 L. Tan et al.

1 0k ka p inv a p inv′ − ≤ if kp is an out-port.k ka p inv a p inv′ − represents the
amount of merchandise consumed at port .kp

2 0k ka p inv a p inv′ − ≥ if kp is an in-port.k ka p inv a p inv′ − represents the
amount of merchandise produced at port .kp

Definition 5 is general enough to describe a variety of internal merchandise
transformation activities. For a manufacturing site ,k ka a p inv a p inv′ − represents the
amount of raw material consumed if . ka p is an in-port, and the amount of finished
products produced if . ka p is an out-port. It should be noted that a merchandise
transformation function does not restrict types of raw materials and finished products.
Raw materials and finished products can be different types of merchandise, and in reality,
they often are.

For a route,k ka p inv a p inv′ − represents the amount of merchandise being
transported. The transportation of merchandise does not have to occur instantaneously.
Transportation delay can be modelled in the meta-model. This can be done by, for
example, further decomposing modes and introducing finite queues. In such a case, the
amount consumed at an in-port is not instantly transferred to out-ports; instead, it is
pushed to a finite queue, and the amount transferred to out-ports is dequeue from the
same queue. Since the size of an internal queue and its content are finite, the status of the
queue can be encoded as part of modes.

Message sending and processing. In our agent-based framework, elements communicate
with each other through messages. Each message contains a receiving element (receiver)
and an action. An action triggers a transition of mode at its receiver. A receiver processes
a message and changes the element's mode as the result.

Definition 6 (Actions and messages): An action α of an agent a is defined as a function
,U U→α : where U is the set of ’sa modes. A message for agent a is a tuple , ,a〈 〉α

where α is an action of .a

Definition 7 (message sending function): Let S be a supply chain, a message sending
function of an agent a in S is a function : 2→ M

mf S where S is the mode of ,a and
M is the set of messages generated in .S

Message sending function in Definition 7 describes how messages are generated by
elements. Based on its mode, an element may send a set of messages and enter the next
mode. Once generated, a message is routed to its destination. The set of messages sent by
an element may also be empty, meaning that it does not send out any message at the
current mode. Such a mode is called a silent mode.

Delivery decision: Delivery decisions made by an agent are defined by a delivery
decision function. A delivery decision function decides how much merchandise an
out-port shall deliver and how it shall be distributed to the in-ports connected to the
out-port. A delivery decision function makes its decision based on the current state.
Definition 8 gives the formal definition of Delivery Decision Function. In other words, a
delivery decision function has form of 1 11 1 1 1 1 0() (,..., ,..., ,...,),δ δ δ δ− + − + − + − += 〈 〉 〈 〉q m m mqmp p p p p p p pdf s
where 1,...,− +

i iqip p are in-ports connected to agent ’sa ith out-port ,−ip and
1 0,...,δ δ− + − +〈 〉iqii ip p p p is an outgoing delivery at .−ip

Definition 8 (Delivery Decision Function): Let S be a supply chain and a be an element
of S with m out-ports. A delivery decision function of agent a is a function

 An extensible object-oriented and agent-based framework 259

� �
1: (...),δ δ− −→ × × mp pdf S where S is the set of states of ,a and � 1δ −

p is an outgoing delivery
at out-port .−ip

3.3 Constraints

In our framework, an element may be imposed with a set of constraints. Constraints can
be used to model physical or logical limitations imposed on an agent. For example,
constraint can be used to model a facility a with limited inventory space ,V in which
case a constraint for a can be defined as

. .
. ,

p a P a P
p inv V+ −∈

≤∑ ∪
 where . .a P a P+ −∪ is

the set of all the ’sa ports.

Definition 9 (Constraints): Let S be a supply chain. A constraint for element a is a
predicate c over states of ,a that is, :c S → {true, false}, where S is the set of ’sa
states. An execution ρ of S is invalid if an agent a can reach a state s such that ()c s
is false, where c is one of ’sa constraints.

3.4 Examples and special cases

Our agent-based framework is general enough to define the structures and behaviours of
a variety of elements. For example, let us consider two very different categories of
elements: facility nodes and routes. A route is a special kind of element that has precisely
1 in-port and 1 out-port. Its merchandise transformation function transfers merchandise
from the in-port of a route to its out-port, often with delay. The delay may be the result of
multiple factors such as route scheduling and transportation delay.

Facility nodes may be further classified to several categories. For example, a retailer
has only in-ports. Its internal merchandise function models the consumption of
merchandise at its demand rate. A warehouse has both in- and out-ports. Its merchandise
transformation function and delivery function shall satisfy the flow balance equation.
That is, its inventory before an update plus incoming deliveries shall be the same as its
inventory after the update minus outgoing deliveries.

An advantage of our framework is that an analyst can define his/her own type of
elements for target supply-chain applications. For example, in a traditional retail setting,
a supplier has only out-ports, but for companies like Dell, a supplier’s site also has
manufacturing capability. In such a case, a supplier node has both in- and out-ports. Its
merchandise function models how raw materials are consumed at in-ports and finish
products are produced at out-ports.

4 Supply-chain semantics and simulation

We formally define the meaning of the meta-model using its simulation semantics. That
is, the semantics of a supply-chain model in our framework is defined by its simulation
traces. Algorithm 1 defines our simulation algorithm.

Semantically, a supply-chain model is a synchronous system extended with messages.
Each iteration in Algorithm 1 simulates a clock update. A clock update is a basic time
unit in supply-chain planning. Depending on planning horizon of underlying
supply-chain operations, an update may represent a hour, a day, or a month, etc. Each

 260 L. Tan et al.

iteration starts with internal merchandise transformation: lines 2–5 call the merchandise
transformation function of each agent. As a result, an element enters its next state and
sends out messages as defined in its message sending function. In general, whenever an
element changes its state, its message sending function is called to check if the element
needs to inform others of the change of its state via messages.

Algorithm 1 Simulate ()S

Require: A supply chain with S with a set of agents A, where each agent a A∈ has a start state

0
as

1 while true do

2 for all a A∈ do

3 ();a a
ts f s=

4 ()a a
mM M f s= ∪

5 end for

6 processMsg()

7 for all a A∈ do

8 //Suppose a has k out-ports 1 ... kp p− −

9 � �
1(,...,) ();k

a
p p df sδ δ− − =

10 for all 1{ ,..., }kp p p− − −∈ do

11 // p− is connected to 1 ... qp p+ +

12 �
1

,...,
q

pp p p pδ δ δ −
− + − +〈 〉 =

13 for all 1{ ,..., }qp p p+ + +∈ do

14 // p+ belongs to agent .d

15 1[. . (. .)]d d
qs s d p inv d p inv p pδ+ + −= ← +

16 ()d d
mM M f s= ∪

17 end for

18
1

[. . (.)]
q

a a
p p p ps s a p inv a p inv δ δ− + − +

− −= ← − −

19 ()a a
mM M f s= ∪

20 end for

21 end for

22 processMsg()

23 end while

 An extensible object-oriented and agent-based framework 261

Algorithm 2 processes messages generated by elements. During every iteration, it takes a
message ,b〈 〉β from a message pool M and applies action β on element .b β may
change the mode of .b Element b may generate messages at the new mode, or its new
mode can be a silent mode with no message being sent. Algorithm 2 uses a
run-to-completion semantics. That is, it exits only after the message pool is empty.

Algorithm 2 ProcessMsg()

1 while ≠M /0 do

2 { }M M m= − // Take a message m from ;M

3 , ;b m〈 〉 =β

4 [()];b b b bs s u u= ← β

5 ();b b
mM M f s= ∪

6 end while

Next, Algorithm 1 calls every element's delivery decision function to compute deliveries.
To realise a delivery, it subtracts inventory at an out-port and adds it to the connected in-
ports. A delivery can also change the states of sending and receiving elements by
changing their inventories at ports. The change of states may cause these agents to send
out messages. Algorithm 2 is called afterward to process these messages.

5 An object-oriented type system for defining supply-chain elements

To ease difficulty in defining new types of elements and promote the design reusability,
we introduce an object-oriented type system for defining custom types of elements. The
UML class diagram in Figure 1 shows the outline of the type system. The design of the
type system follows the meta-model introduced in Section 3. At the top of the hierarchy
is a built-in abstract type Agent, which serves as the base class for all the types of
elements. Agent summarises the attributes and methods common to all the supply-chain
elements. As defined in the meta-model, the interface of an element has in-ports and
out-ports. The attributes shared by in-ports and out-ports such as inventory are encoded in
the built-in abstract type Port. An association between Agents is implemented via in-ports
and out-ports. Element types subclassing Agent may choose to restrict such association.
For instance, a retailer may choose to restrict the association to in-ports only.

The design of Agent follows the strategy design pattern (Gamma et al., 1994). A
strategy is a collection of functions that define the decision logics central to the behaviour
of an element. The syntax and semantics of these functions are introduced in Section 3.2
as part of our meta-model for supply-chain elements. The merchandise transformation
function ()mtf defines an element’s internal merchandise flow, the message sending
function ()msf defines communications among elements, and the delivery decision
function ()ddf defines distributions of merchandise at out-ports. The hierarchy of
strategy classes assembles the hierarchy of agent classes. Figure 1 shows a generic node
strategy ()NodeStrat and a generic route strategy ().RouteStrat The generic route

 262 L. Tan et al.

strategy defines the behaviour common to all the routes. Since a route typically does not
send a message, RouteStrat implements a null ,msf and since a route usually
deliveries all the merchandise at its out-port to its destination, ddf of RouteStrat simply
moves merchandise at the out-port of a route to the in-port of its attached node.
Nevertheless, mtf is more complicated and its logic depends on factors such as route
scheduling and transportation delay. mtf is declared as an abstract method in
RouteStrat and its actual implementation is deferred to actual route classes. The
strategy design pattern decouples decision logics and their hosts. Such separation adds
additional flexibility to agent modelling. For instance, nodes with the same structure may
be associated with different decision logics. An add-on benefit of adopting the strategy
design pattern is that an agent can change its strategy on-the-fly. This feature is especially
useful when one models an adaptive supply chain, which changes its policy based on its
environment.

To define a new type of element, an analyst starts with subclassing Agent or one of its
descendants. Each subclass may define new behaviour and/or add constraints. For
example,

Node class may restrict the type of its inherited attribute strategy to ,NodeStrat so
only a strategy of type NodeStrat or its descendants can be used by a Node object. As
another example, a Node class may choose to introduce a new function for checking its
inventory. Class inheritance reduces the overhead of defining a new type of element.
Note that a type on a lower layer of the hierarchy automatically inherits the behaviours of
its ancestors. To define a new type, an analyst may choose to subclass the lowest type in
the hierarchy that is a generalisation of the new type. This allows the analyst to focus on
behaviours and constraints unique to the new type, and at the same time inherit the
generalised logic from the ancestors of the new type. For example, in Figure 1, the type
definition of a retailer with just-in-time restocking policy ()JITStore may start as a
subclass of a more general type Retailer.

6 Implementation

We implemented an initial prototype of the proposed agent-based formal framework in
SIMRISK. SIMRISK is an integrated tool for supply-chain modelling, simulation, and
risk analysis. It implements a visual integrated development environment (IDE). Its IDE
provides three different views of a supply chain: a hierarchical presentation of elements
of the supply chain (tree view), a geographic view of elements (network view), and a
property page for displaying attributes of a selected element (property view). SIMRISK
IDE can visualise the on-the-fly status of a simulation. For example, it shows the
animation of shipments during a simulation. Besides a normal simulation mode in which
a user can start, pause, and stop a simulation, SIMRISK also provides a batch mode for
numerical experiments. During the batch mode, all the non-essential status displays are
disabled to reduce computational overhead. In the spirit of the tools extensibility, the
design of SIMRISK’S graphic user interface also supports the display of information
specific to custom-defined element types: SIMRISK provides a graphic handler to a
custom-defined type package, and the package can use the handler to display attributes of
an element of custom-defined type. Figure 2 shows a snapshot of SIMRISK'S visual IDE.
SIMRISK is written in Java.

 An extensible object-oriented and agent-based framework 263

Figure 1 The object-oriented type system developed by SIMRISK (see online version for colours)

 264 L. Tan et al.

Figure 2 The IDE of SIMRISK (see online version for colours)

 An extensible object-oriented and agent-based framework 265

Figure 3 The architecture design of SIMRISK (see online version for colours)

 266 L. Tan et al.

Figure 3 shows the architecture design of SIMRISK, presented as a UML component
diagram. To achieve a higher extensibility, a key feature of SIMRISK is to separate the
operational semantics of a supply chain from its topology. The requirement for defining
the operational semantics of a supply chain is designated by an interface for strategy. An
analyst can define his/her own types of elements, as long as she/he supplies the necessary
details as required by the strategy interface. The topology package stores the physical
structure of a supply chain. It defines, for example, the locations of nodes and how they
are connected by routes. In other words, the topology package defines geographic
locations of elements and the custom-defined type package specifies their semantics as
defined in Section 3. To test different supply-chain policies on the same network
structure, an analyst can switch between different strategies on-the-fly. SIMRISK
implements an event-driven simulation engine as outlined in Algorithm 1.

7 Conclusions and future works

We proposed an extensible object-oriented and agent-based formal framework for
modelling and simulating supply chains. This research work made the following
contributions to supply-chain modelling and analysis: first, we developed an agent-based
approach that supports custom-defined element types. Both the behaviour and internal
structure of a node are customisable; second, to promote the design reusability, the
proposed framework incorporates an object-orient type system to simplify the work of
defining a new type of element. The type system allows an analyst to inherit common
behaviour and structure form existing elements, and to focus on the features unique to the
new type of element; third, we introduced a meta-model for supply chains and formally
define its semantics. The formalism we introduced defines the interface of an element
(Section 3.1), its internal and external behaviours (Section 3.2), and its constraints
(Section 3.3); finally, we proposed a discrete-event simulation algorithm. The algorithm
also defined the simulation semantics of the meta-model.

There are several directions to extend this research. For instance, multi-core hardware
could be an excellent platform for our agent-based framework, with elements running on
different cores and communications expedited by shared memory. We plan to study the
parallel simulation of the agent-based framework on multi-core hardware. Specifically,
we will develop a generative simulation technique that is capable of generating
simulation code optimised for a specific multi-core architecture. Another possibility is to
provide a tighter integration between simulation-based approach and formal analysis
approach. Currently SIMRISK can translate a supply-chain model with elements of
built-in types to an extended Markov decision process for formal analysis. In the future,
we want to extend formal analysis to supply-chain models with custom-defined element
types.

References
Axelrod, R. (1997) The Complexity of Cooperation: Agent-Based Models of Competition and

Collaboration, Princeton University Press.
Chen, X. and Zhang, J. (2008) ‘Supply chain risks analysis by using jump-diffusion model’, in

WSC ’08: Proceedings of the 40th Conference on Winter Simulation, pp.638–646, Winter
Simulation Conference.

 An extensible object-oriented and agent-based framework 267

Costco Wholesale Corporation (2007) ‘Costco wholesale annual report 2007’, Year ended
2 September 2007.

Ferrer, J. and Karlberg, J. (2006) ‘Achieving high performance through effective global
operations’, Technical report, Accenture.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994) Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley.

Liu, J., Wang, W., Chai, Y. and Liu, Y. (2004) ‘Easy-SC: a supply chain simulation tool’, in
Proceedings of the 2004 Winter Simulation Conference, Vol. 2, pp.1373–1378.

Neumann, J.V. (1966) Theory of Self-Reproducing Automata, University of Illinois Press,
Champaign, IL, USA.

Rossetti, M.D. (2008) ‘JSL: an open-source object-oriented framework for discrete-event
simulation in Java’, International Journal of Simulation and Process Modeling, Vol. 4, No. 1,
pp.69–87.

Rossetti, M.D., Miman, M. and Varghese, V. (2007) ‘An object-oriented framework for simulating
supply systems’, Journal of Simulation, Vol. 2, pp.103–116.

Swaminathan, J., Smith, S. and Sadeh, N. (1998) ‘Modeling supply chain dynamics: a multiagent
approach’, Decision Sciences, Vol. 29, No. 3, pp.607–632.

Tan, L. and Xu, S. (2008) ‘Model check stochastic supply chains’, in Proceedings of the IEEE
2008 International Conference on Information Reuse and Integration, IEEE, pp.416–421.

van Delft, C. and Vial, J.P. (2004) ‘A practical implementation of stochastic programming: an
application to the evaluation of option contracts in supply chains’, Automatica, Vol. 40, No. 5,
pp.743–756.

Wang, W., Dong, J., Ding, H., Ren, C., Qiu, M., Lee, Y. and Cheng, F. (2008) ‘An introduction to
IBM general business simulation environment’, in Proceedings of the 2008 Winter Simulation
Conference, pp.2700–2707.

Wei, L., Chai, Y., Ren, C. and Dong, J. (2007) ‘A research review on dynamic performance
analysis of supply chain system’, in Proceedings of the 2006 Asia Simulation Conference on
Systems Modeling and Simulation Theory and Applications, Springer, Japan, pp.163–167.

